

AQA Chemistry A-level Topic 3.2 - Alkanes

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is an alkane?

What is an alkane?

A saturated hydrocarbons containing C-H bonds only

What is the general formula of an alkane?

Are their bonds polar? Why/why not?

Nonpolar- carbon and hydrogen have similar electronegativities

Which intermolecular forces do they have? Why?

Intermolecular forces? Why?

Only van der Waals forces of

attraction - bonds are

non-polar

Are they soluble in water? why?

Solubility in water? why?

Insoluble because hydrogen bonds in water are stronger than alkanes' van der Waals forces of attraction

How reactive are alkanes?

How reactive are alkanes?

Very unreactive

Which reactions will alkanes undergo?

Which reactions will alkanes undergo?

Combustion and reaction with

halogens

What is crude oil? How is it formed? Is it renewable? Why?

What is crude oil? How is it formed? Is it renewable? Why?

Mixture of fractions (hydrocarbons with similar

boiling points and properties)

Formed at high temperatures and pressures

deep below earth's surface over millions of years

 \rightarrow therefore non-renewable

Name the fractions from high to low boiling point.

Name the fractions from high to low boiling point.

Gases - fuel on site

Gasoline/petrol/naphtha - cars

Kerosene/paraffin - jet fuel, lighting

Diesel oil - lorries/taxis

Lubricating oil/waxes - candles, engine oil

Fuel oil - ships, power stations

Tar/bitumen - roads/roofing

What is fractional

distillation/how does it

work?

What is fractional distillation/how does it work?

Crude oil heated until mostly vapourised

Passed into a fractionating tower that is cooler at the top than the bottom

Liquid fractions are piped off at the bottom

Vapours rise up the column and - via trays and bubble caps - condense

when temperature < their boiling point

Shortest chain hydrocarbons condense at the top as they have the lowest boiling points

What is fracking and how is it done?

What is fracking and how is it done?

Natural gas held within shale rock

Drill into shale, force pressurised water and sand into rock to

fracture it, Collect gas

HCI and methanol added to break up shale and prevent corrosion

Pros/cons of fracking?

Pros/cons of fracking?

Advantages - gas supply for many years, reduces imported gas and electricity

Disadvantages - lots of traffic to local area, concern about amount of water used, chemical additives can pollute water supplies, can cause small earthquakes, combust $CH_4 \rightarrow CO_2$ \rightarrow global warming

Why are alkanes cracked?

Why are alkanes cracked?

To turn a long chain alkane, with is not very economically valuable, into a shorter chain alkane (more economically valuable as can be used as a fuel) and an alkene (more reactive, starting point for many products)

What are the conditions for

thermal cracking?

What are the conditions for thermal cracking?

700-1200 K temperature

Up to 7000 kPa pressure

What is the intermediate for the reaction?

What is the intermediate for the reaction?

Free radicals

What are the main products of thermal cracking?

What are the main products of thermal cracking?

alkenes

What are the conditions for catalytic cracking?

What are the conditions for catalytic cracking?

Lower temp (720K)

Lower pressure (but above atmospheric)

- Zeolite catalyst (SiO₂ and Al₂O₃) with a
- honeycomb structure to give a large surface area

What are the main products of catalytic cracking?

What are the main products of catalytic cracking?

Cycloalkanes, aromatic hydrocarbons, branched alkanes

Write an equation for the combustion of propane

Write an equation for the combustion of propane

$\mathrm{C_3H_8} + 5\mathrm{O_2} \rightarrow 3\mathrm{CO_2} + 4\mathrm{H_2O}$

What is a fuel?

What is a fuel?

Something which releases heat energy when combusted

What are the five main fuels comprising of alkanes?

What are the five main fuels comprising of alkanes?

Methane, butane, propane, petrol (about C8), paraffin (C10 - C18)

What is incomplete combustion and what products are formed in the case of alkanes?

What is incomplete combustion and what products are formed in the case of alkanes?

Combustion in a limited supply of oxygen

- CO carbon monoxide poisonous
- C carbon particulates soot global dimming

Which type of hydrocarbons are most likely to undergo incomplete combustion?

Which type of hydrocarbons are most likely to undergo incomplete combustion?

Longer chains

What is the environmental impact of carbon monoxide?

What is the environmental impact of carbon monoxide?

It is toxic/poisonous

What is the environmental impact of nitrogen oxides?

What is the environmental impact of nitrogen oxides?

form nitric acid \rightarrow acid rain, photochemical smog

What is the environmental impact of sulfur impurities/sulfur dioxide?

What is the environmental impact of sulfur impurities/ sulfur dioxide?

form sulphuric acid \rightarrow acid rain

What is the environmental impact of soot (carbon)?

What is the environmental impact of soot (carbon)?

asthma, cancer, global dimming

What is the environmental impact of unburnt hydrocarbons?

What is the environmental impact of unburnt hydrocarbons?

Photochemical smog

What is the environmental impact of carbon dioxide?

What is the environmental impact of carbon dioxide?

greenhouse gas \rightarrow global warming,

increases global temperatures,

speeds up climate change

What is the environmental impact of water vapour?

What is the environmental impact of water vapour?

greenhouse gas \rightarrow global warming,

increases global temperatures,

speeds up climate change

What are flue gases?

What are flue gases?

Gases given out by power stations

Write two equations for two different ways of desulfurising flue gases.

Write two equations for two different ways of desulfurising flue gases.

CaO (s) + 2H₂O (l) + SO₂ (g) + $\frac{1}{2}O_2$ (g) \rightarrow CaSO₄.2H₂O (s)

$\text{Or CaCO}_{3}\left(s\right) + \text{SO}_{2}\left(g\right) + \frac{1}{2}\text{O}_{2}\left(g\right) \rightarrow \text{CaSO}_{4} + \text{CO}_{2}\left(g\right)$

What are catalytic converters made up of?

What are catalytic converters made up of?

Ceramic honeycomb coated with

platinum, palladium and rhodium (Pt,

Pd and Rh) metals

What do catalytic converters catalyse (equations)?

What do they catalyse (equations)?

They catalyse these reactions of products from

car exhausts:

 $2CO(g) + 2NO(g) \rightarrow N_2(g) + 2CO_2(g)$

Hydrocarbons + NO \rightarrow N₂ + CO₂ + H₂O

What are greenhouse gases?

What are greenhouse gases?

Gases which trap infrared radiation, making the earth act like a greenhouse

What is the greenhouse effect and how does it contribute to global warming?

DOfSPMTEducation

www.pmt.education

What is the greenhouse effect and how does it contribute to global warming?

Greenhouse gases trap infrared radiation in the atmosphere, atmosphere heats up \rightarrow global warming

Define carbon neutral activities

Define carbon neutral activities

Activities that produce no net / overall carbon dioxide emissions

How are halogenoalkanes formed from alkanes?

How are halogenoalkanes formed from alkanes?

Free radical substitution reaction

What are the three stages of free radical substitution?

What are the three stages of free radical substitution?

Initiation - breaking halogen bond to form free radicals

Propagation - chain part of the reaction where products are

formed but free radical remains

Termination - free radicals removed, stable products formed

What are the conditions needed for the formation of a free radical chlorine atom?

F

What are the conditions needed for the formation of a free radical chlorine atom?

Presence of UV light

Write equations for the reaction of CH_4 with CI_2 to form CH_3CI

Write equations for the reaction of CH_4 with CI_2 to form CH_3CI

Initiation: $Cl_2 \rightarrow 2Cl$ (in presence of UV light)

Propagation: $CI \cdot + CH_4 \rightarrow HCI + \cdot CH_3$

$$\bullet CH_3 + CI_2 \rightarrow CH_3CI + CI \bullet$$

Termination:

 $\begin{array}{l} \bullet \mathrm{CH}_3 + \mathrm{CI} \bullet \to \mathrm{CH}_3\mathrm{CI} \\ 2\mathrm{CI} \bullet \to \mathrm{CI}_2 \\ \bullet \mathrm{CH}_3 + \bullet \mathrm{CH}_3 \to \mathrm{CH}_3\mathrm{CH}_3 \end{array}$

What is the ozone layer's

function?

protects the earth from harmful exposure to too many UV rays

How do CFCs break the ozone layer down?

How do CFCs break the ozone layer down?

Free radical substitution

Write an equation for the overall decomposition of ozone into oxygen (O₂)

Write an equation for the overall decomposition of ozone into oxygen (O_2)

 $2O_3 \rightarrow 3O_2$

Write free radical substitution equations to show how CI free radicals catalyse the break down of

D PMTEducation

www.pmt.education

Write free radical substitution equations to show how CI free radicals catalyse the decomposition of O_3

 $Cl_{2} \rightarrow 2Cl \bullet \text{ (in presence of UV light)}$ $Cl \bullet + O_{3} \rightarrow ClO \bullet + O_{2}$ $ClO \bullet + O_{3} \rightarrow 2O_{2} + Cl \bullet$ $Overall: 2O_{3} \rightarrow 3O_{2}$